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In this paper, direct numerical simulation (DNS) data of an opposed-jet hydrogen/air diffusion flame
are, in a postprocessing step, analyzed using the proper orthogonal decomposition (POD) technique. The
aim of this work is twofold. The first goal is to compute a small number of space-dependent empirical
eigenfunctions, so that a low-dimensional representation of the data generated by the large model of the
discretized partial differential equations can be obtained using a weighted sum of these few eigenfunctions
(POD modes). It is found that only six modes are needed for an accurate representation of the data in an
extended range of inflow velocities. This large data reduction takes into account not only chemical kinetics
but also transport phenomena in a full two-dimensional context and constitutes the first step toward the
construction of low-dimensional dynamic models for the opposed-jet system. It is also found that the PODs
have very good interpolatory properties. The second goal is to use part of the available data (i.e., partial
measurements), together with the computed modes, to estimate, or, in the terminology of process control,
to observe, the “unmeasured” quantities. It is found that only a small number of measurements are needed
to obtain accurate estimates of the rest of the data.

Introduction

An accurate, well-resolved discretization of the
conservation equations for laminar chemically reac-
tive flows reduces the partial differential equations
(PDEs, which are infinite-dimensional dynamical
systems) to systems of ordinary differential equa-
tions (ODEs). However, the size of the latter model
is usually very large: in two dimensions and with de-
tailed chemical kinetics, such models can easily
reach (and even exceed) O (105) degrees of freedom.
While the descriptive and predictive capabilities of
such models for a large range of operating parame-
ters can be exceptional, the computational cost can
also be prohibitive.

The method of proper orthogonal decomposition
(POD) (also known as the method of empirical or-
thogonal eigenfunctions [EOFs] in the meteorology
and oceanography literature [1], as Karhunen-Loève
[KL] expansion in pattern recognition [2], and as
principal component analysis [PCA] in the statistical

literature [3]) has been used in the construction of
low-dimensional models from extensive numerical
or experimental data from non-reactive turbulent
flows (see Ref. [4] for a detailed presentation of the
method and its application).

In this paper, we employ the POD technique to
obtain low-dimensional representations of a H2/air
opposed-jet diffusion flame over a range of jet-exit
velocities. The statistical analysis of the simulation
results provides an optimal basis of orthogonal ei-
genfunctions (modes), in the sense that they mini-
mize the mean square error between the original
data and its low-dimensional representation. It turns
out that the reactive-flow system with more than
26,000 degrees of freedom can be approximated by
the weighted sum of only six modes. This in turn
means that one only needs the six coefficients
(weights) of the modes to get a good description of
the system. We find that this low-dimensional rep-
resentation approximates well not only the direct nu-
merical simulation (DNS) data used to obtain the
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Fig. 1. Spectral element skeleton, coordinate system,
and boundary conditions used for the opposed-jet DNS
(uniform inflow velocity profiles for both fuel and air).

modes but also data for intermediate jet-exit veloc-
ities within the range of velocities covered by the
data.

In principle, one can substitute the original vari-
ables by their weighted sum expansion in the PDEs
and perform a Galerkin procedure to obtain a system
of, here, only six ODEs for the time derivatives of
the coefficients in the expansion (a POD-Galerkin
procedure). Time integration of this system could
then provide a reasonably accurate approximation to
the full (more than 26,000 ODEs) system. For sim-
ple forms of the nonlinear terms in the original
PDEs (e.g., quadratic), the low-dimensional model
can be constructed in explicit form [5,6]. However,
for higher-order and/or non-polynomial nonlineari-
ties (as is the case for reactive systems due to the
exponential temperature dependence of the reaction
rate constants), the evaluation of the right-hand side
and the Jacobian for POD-Galerkin models is com-
putationally expensive.

Here we are interested in another problem: the
construction of POD-based observers, so that the
computed POD modes and a set of partial measure-
ments can be used to estimate the complete field of
unmeasured quantities. Typically in experiments,
measurements are (or can only be) made for a few
variables either at selected positions (e.g., velocity
with laser Doppler anemometry, temperature with
coherent anti-Raman Stokes or a thermocouple) or,
in the best case, over two-dimensional domains (e.g.,
velocity with particle image velocimetry [PIV], OH
concentration with planar laser-induced fluores-
cence [PLIF], temperature with Rayleigh scatter-
ing). In particular, opposed-jet diffusion flames are
commonly investigated experimentally by measuring
the velocity and temperature at points along the axis
of symmetry. In more recent experiments investi-
gating transient processes such as flame-vortex in-
teractions in the same setup, two-dimensional mea-
surement techniques such as PLIF were employed.
Recently, Podvin and Lumley [7] used POD modes
for the velocity in the wall region of a turbulent
boundary layer to reconstruct the flow in the wall
region only from wall-shear measurements. We in-
vestigate this idea here to find how well partial mea-
surements of a single variable (either in the full do-
main or along the axis of symmetry) can be used
together with the available POD modes to estimate
the unmeasured variables; the results are remarkably
good.

Methodology and Results

Simulation of the Opposed-Jet H2/Air Burner

The DNS data were obtained with a spectral-ele-
ment code that solves the low Mach number form
of the conservation equations for momentum, spe-

cies, and energy of compressible chemically reactive
flows [8]. The problem solved was that of a 20% H2
(by mole) in N2 and air diffusion flame, stabilized on
an opposed-jet burner in a two-dimensional, axisym-
metric geometry. The geometry, the boundary con-
ditions, and the grid employed in the simulations are
shown in Fig. 1. For fixed geometry inflow-stream
compositions and temperature, and for equal veloc-
ity magnitudes of the plug-flow profiles at the jet
exits, the behavior of the system is parameterized
only by the Reynolds number defined at the air side,
Re � uair * D/mair. Extending the work presented in
Ref. [9], simulations were performed in the range
from low- to high-flow-rate extinction of the flame,
corresponding to Reynolds number values from Re
� 10 to Re � 1,800. For each Reynolds number,
the simulation starts from an appropriate initial con-
dition, and the whole transient response, until the
steady-state flame is established, is computed by
time-accurate integration. Resolution is adjusted to
accommodate the flame thickness by varying the or-
der of the interpolating polynomial in each element.
For the low- to medium-strain-rate simulations (Re
� 20, 50, 100, 200, and 400), it was found that
fourth-order Legendre polynomials (5 � 5 elemen-
tal resolution) in both the radial and axial direction
of the 120 spectral-element mesh provide an accu-
rate discretization. The detailed chemical kinetics of
Ref. [10] (9 species, 19 reversible elementary reac-
tions) and multicomponent transport based on the
mixture-fraction formulation were used in the sim-
ulations.

Data Reduction

Forty-nine snapshots (two-dimensional fields at
steady state and along the transients) of velocity,
pressure, temperature, and species mass fractions (a
total of 13 variables each) were extracted from the
simulations and interpolated on a uniform 101 �
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Fig. 2. Mean field and first six POD modes for temperature. The mean field is dimensional, while the modes are
dimensionless.

201 grid. To account for the different units and mag-
nitudes of the variables, they were all normalized
between 0 and 1 and then arranged in a matrix,

, of M � 49 one-dimen-U� � [u�, u�, . . . , u� ]1 2 M
sional column vectors of length 101 � 201 � 13.
The latter was subsequently processed with the code
KLTOOL [11], which found the orthogonal eigen-
vectors (the POD modes) using the method of snap-
shots [12] as follows:

1. Compute the mean vector, ū, with
M1

u � U�i � ij
M j�1

2. Compute the vectors with zero mean (variations),
� ū, and arrange them in a matrix, U,u � u�i i

as before.
3. Compute the M � M covariance matrix,

1 TC � (U U).
M

4. Compute the non-negative eigenvalues, ki, i �
1, . . . , M, in the order of decreasing magnitude
and the corresponding eigenvectors, �i, of the co-
variance matrix, C.

The orthogonal eigenfunctions (modes) can then be
written as

M

w � � Uk � ik i
i�1

where �ik is the ith component of the kth eigenvec-
tor. As an example, the mean field (dimensional) and
the six modes (dimensionless) of temperature are
shown in Fig. 2. The computed modes describe the
variations of the data from the mean. As Re is in-
creased, the flame becomes thinner and longer, as
reflected by the isocontours of the temperature
modes that show large variations on both sides and
close to the tip of the mean field. By projecting the
database vectors onto the modes wk(x), k � 1, . . .,
N � M, the coefficient, ak, that provide the optimal
approximation to the full data,
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Fig. 3. Histogram of the nine largest eigenvalues (left
axis) and percentage of the energy captured by the corre-
sponding modes (line with filled circles, right axis).

Fig. 4. Re � 300: comparison of the DNS two-dimen-
sional fields of temperature (top) and OH mass fractions
(bottom) and their approximation via six POD modes. The
distribution of the relative error is also plotted.

N

u� � ū � a w (x)� k k
k�1

are obtained as

u •wk
a �k

w •wk k

The sum of the eigenvalues of the covariance matrix
is defined as the “energy” of the data. A commonly
used criterion for selecting the number of modes to
keep in a low-dimensional representation is that of
capturing a certain percentage of the energy of the
data. As can be seen in Fig. 3, only N � 6 and N �
9 modes are needed to capture kn/ kn �N M� �n�1 n�1
99% and 99.5% of the energy of the DNS data, re-
spectively. The rest of the modes are considered
comparatively meaningless and are ignored from the
low-dimensional representation. Indeed, velocities,
temperature, and species mass fractions (with the
exception of HO2 and H2O2, which can be as much
as 25% off in some regions) of all the original data
fields are reconstructed with less than 13% relative
error over the whole two-dimensional domain, with
both six and nine modes. The additional three modes
offer marginal improvement in the accuracy of the
approximation of velocity and mass fraction of major
species but have a stronger effect on the mass frac-
tions of minor species.

Accurate approximations were obtained not only
for the DNS data used to compute the modes but
also for data at intermediate values of the Reynolds
number (i.e., for Re � 20 � 400). Fig. 4 compares
the DNS fields of temperature and OH mass frac-
tion with those obtained with six modes for the
steady-state solution at Re � 300 (which was not
used to obtain the POD modes). In this case, in-
creasing the number of modes to nine did not re-
duce the relative error.

We can conclude that a linear combination of only
six modes provides an accurate low-dimensional rep-
resentation of the data generated by the full (26,000
degrees of freedom) model for the range of Re val-
ues used to compute the POD modes. In principle,
one can substitute this approximation back into the
conservation equation and derive the equations of
change for the coefficients, ak (see, for example,
Refs. [5,6] for non-reactive flows), which will effec-
tively reduce the original 26,000 ODEs to only 6
ODEs. In the next subsection, however, we consider
the problem of using the available POD modes to-
gether with measurements of some of the variables
(e.g., temperature) to obtain an estimate of the un-
measured variables.
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Fig. 5. Re � 300: comparison of the DNS OH field with
its estimate using six (top) and nine (bottom) POD modes
together with temperature two-dimensional measure-
ments. The distribution of the relative error is also plotted.

POD-Based Observers

Since only a small number of POD mode can pro-
vide a good approximation to the DNS model, in
principle, only the same small number of measure-
ments at the proper locations (i.e., with non-trivial
components in the span of the POD modes) is suf-
ficient to evaluate the coefficients, ak, from which
the entire field can be approximated. In fact, one
can even find the optimal measurement points, an
issue we are currently working on but which will not
be considered here. Therefore, a few measurements
of easily measured quantities (e.g., temperature or
velocity) at selected locations, together with the
POD modes, can be used to effectively obtain in-
formation on other quantities in the entire domain

which cannot be easily measured, such as radical
species concentrations. Typically, measurements are
performed at many more points than the small num-
ber of POD coefficients, resulting in an overdeter-
mined system of linear equations. In this case, the
estimate of the POD coefficients are found as a least-
square solution to the problem using singular value
decomposition [13].

This procedure was applied to our data, substitut-
ing the experiment with direct simulation. Two cases
commonly used in the experimental study of op-
posed-jet burners were considered: measurement
(1) of two-dimensional fields and (2) along the axis
of symmetry. Fig. 5 compares the computed OH
mass fraction fields with those obtained using six
modes (top half) and nine modes (bottom half) and
the temperature two-dimensional field measure-
ment (i.e., at 101 � 201 points) to estimate the co-
efficients, ak, for the Re � 300 case. It should be
stressed that the Re � 300 data were not used to
compute the POD modes. Again, with the exception
of HO2 and H2O2, the “unmeasured” quantities can
be estimated with less than 13% maximum relative
error. In this case, increasing the number of modes
to nine offered only marginal improvement. Good
results were obtained even when temperature was
measured at only 101 points along the axis of sym-
metry, as shown in Fig. 6 for the Re � 300 case.
The behavior and values of the relative errors are
practically unaffected in a large region around the
axis. This indicates that it is indeed possible to use
only a handful of carefully selected measurement
points (together with the POD modes) to estimate
the remaining quantities over the two-dimensional
domain. Higher relative errors are observed in the
low OH mass fraction regions away from the axis,
where, in the case of axial data only, the observer is
not expected to perform well in the first place. When
the number of modes is increased from six (Fig. 6,
left half) to nine (Fig. 6, right half) close to the axis,
the relative error decreases. The relative error is al-
most doubled, however, in a region one diameter
away from the axis, where, again, the OH mass frac-
tion is very low. In passing, we would like to com-
ment on an issue raised by a reviewer with respect
to the optimal number of modes for the observers.
Different criteria have been proposed [1], with the
energy criterion used here being the most popular
one. Once the energy threshold is chosen, the opti-
mal representation is fixed. The quality of the ob-
server estimates is then solely determined by the
principal angles [13] between the POD and the mea-
surement subspace. It should also be noted that the
maximum relative error (L� norm) is just one way to
quantify the accuracy of the estimations; any error
norm can be selected (in fact, the L2 norm would
give lower error values). We would like to add at this
point, as Prof. Gouldin pointed out during the sym-
posium to one of the authors (C.E.F.), that the Kar-
hunen-Loève basis was exploited in a similar way in

OH    (computed) 
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Fig. 6. Re � 300: comparison of the DNS OH field with
its estimate using six (top) and nine (bottom) POD modes
together with temperature measurements along the axis of
symmetry. The distribution of the relative error is also plot-
ted.

the evaluation of a tomographic inversion method as
a combustion diagnostic tool [14].

Conclusions and Further Work

The method of POD was applied to DNS data for
an opposed-jet H2/air burner. It was found that only
six modes capture 99% of the total “energy” of the
original system of 26,000 degrees of freedom. In
contrast to the traditional reduction techniques ap-
plied to chemically reactive systems, this method
takes into account not only chemical kinetics but also
transport and transient phenomena in a full two-
dimensional context. The results suggest that the

problem investigated here (26,000 ODEs) can be
described effectively with only 6 ODEs. However,
the construction of a low-dimensional dynamic
model based on the POD modes is complicated by
the highly nonlinear form of the reaction rate terms
in the conservation equations. It should be possible
to overcome this problem either by moving between
the (small) POD space and the original (large) space
or by fitting a functional form to the right-hand side
of the ODEs for the POD coefficients. We plan to
explore both approaches, which will allow for the
true model reduction to only six ODEs, in the near
future.

In addition to data reduction, the POD modes
were used in a way which can be of interest in ex-
periments. Since only a few modes are needed to
provide a good representation of the full system,
only a handful of measurements at selected points
can, in principle, be used to obtain estimates of the
coefficients, ai, and therefore of the unmeasured
quantities. The problem of selecting the measure-
ment points was not addressed in this paper. Instead,
the good performance of the proposed methodology
was shown for the case where the number of mea-
surements exceeds the number of modes. The co-
efficients in this case are obtained as a least-square
solution to the corresponding overdetermined sys-
tem of linear equations. We are currently working
on an algorithm for the selection of the minimal
number of sensors and their location for the accurate
estimation of the complete field. Since well-resolved
DNS data were used to obtain the POD modes, we
did not address here the effect of noise in the initial
data. This will be particularly important for experi-
mental data processing, and we plan to examine this
in the future.
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